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ABSTRACT
The Kleinberg HITS and the Google PageRank algorithms are eigen-
vector methods for identifying “authoritative” or “influential” arti-
cles, given hyperlink or citation information. That such algorithms
should give reliable or consistent answers is surely a desideratum,
and in [10], we analyzed when they can be expected to give sta-
ble rankings under small perturbations to the linkage patterns. In
this paper, we extend the analysis and show how it gives insight
into ways of designing stable link analysis methods. This in turn
motivates two new algorithms, whose performance we study em-
pirically using citation data and web hyperlink data.

1. INTRODUCTION
From its origins in bibliometric analysis [11], the analysis of

cross-referencing patterns—“link analysis”—has come to play an
important role in modern information retrieval. Link analysis al-
gorithms have been successfully applied to web hyperlink data to
identify authoritative information sources, and to academic citation
data to identify influential papers [8, 3]. In particular, together with
classical IR ranking techniques, link analysis provides the basis for
some of today’s Internet search engines.
An important feature of collections such as the World Wide Web

is their dynamic nature. References can be changed, become in-
accessible, or be missed by a search engine. If link analysis is to
provide a robust notion of authoritativeness in such a setting, it is
natural to ask that it also be robust in the sense of being stable to
perturbations of the link structure. Indeed, it seems unlikely that a
highly unstable search engine—say one that completely changes its
results from day to day—would be trusted by its users to be always
returning all the relevant articles. In the setting of academic cita-
tions, stability also means (for example) that a few authors writing
a relatively small number of papers should rarely cause us to com-
pletely change our minds about what articles in a community had
been seminal. This issue of stability seems to have received little
attention in the link analysis literature, and is the principal focus of
our paper.
Two popular algorithms, in particular the Kleinberg HITS algo-

rithm [8] and the Google PageRank algorithm [3], are eigenvector-
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based methods; they essentially compute principal eigenvectors of
particular matrices related to the adjacency graph to determine “au-
thority.” Understanding the robustness of link analysis algorithms
therefore involves an analysis of the stability of these eigenvector
calculations.
Using ideas from matrix perturbation theory and Markov chain

theory, in [10] we formally characterized conditions under which
HITS and PageRank are stable. In this paper, we briefly summa-
rize the results derived in [10], and show how they give insight into
ways of designing stable link analysis algorithms. This then mo-
tivates two new algorithms: Randomized HITS, which merges the
hubs-and-authorities notion from HITS with a stabilizing “reset”
mechanism from PageRank (see also [14]); and Subspace HITS,
which provides a principled way of combining multiple eigenvec-
tors from HITS to yield aggregate authority scores. These new al-
gorithms are also demonstrated empirically to produce good results
on both academic citation and web query data.
We also explore the issue of the “diversity” of the results returned

by these algorithms. This leads into a discussion of the relationship
between Latent Semantic Indexing (LSI) [6] and HITS.

2. AN EXAMPLE
We begin with an example. The Cora database [9] is a collection

containing citation information from several thousand academic
papers in various areas of computer science. We ran the HITS and
PageRank algorithms on the subset of the Cora database consisting
of all its Machine Learning papers, and examined the list of pa-
pers that they considered “authoritative.” To evaluate the stability
of the algorithms, we also constructed five perturbed versions of
the databases, each of which contained a randomly selected 70%
subset of the papers. (“Since Cora obtained its database via a web
crawl, what if, by chance or mishap, it had only retrieved 70% of
these papers?”) If a paper is truly authoritative, we might hope that
it is still identifiable as such with only a subset of the citation data.
The results from HITS are shown below. The leftmost column

is the HITS authority ranking obtained by analyzing the full set
of Machine Learning papers; the five rightmost columns report the
ranks in runs on the perturbed databases. We see substantial varia-
tion across the different runs:
HITS results on Cora ML papers:
1 “Genetic algorithms in search, optimization...”, Goldberg 1 3 1 1 1
2 “Adaptation in natural and artificial systems”, Holland 2 5 3 3 2
3 “Genetic programming: On the programming of...”, Koza 3 12 6 6 3
4 “Analysis of the behavior of a class of genetic...”, De Jong 4 52 20 23 4
5 “Uniform crossover in genetic algorithms”, Syswerda 5 171 119 99 5
6 “Artificial intelligence through simulated...”, Fogel 6 135 56 40 8
7 “A survey of evolution strategies”, Back+al 10 179 159 100 7
8 “Optimization of control parameters for genetic...”, Grefenstette 8 316 141 170 6
9 “The GENITOR algorithm and selection pressure”, Whitley 9 257 107 72 9
10 “Genetic algorithms + Data Structures = ...”, Michalewicz 13 170 80 69 18
11 “Genetic programming II: Automatic discovey...”, Koza 7 - - - 10
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2060 “Learning internal representations by error...”, Rumelhart+al - 1 2 2 -
2061 “Learning to predict by the method of temporal...”, Sutton - 9 4 5 -
2063 “Some studies in machine learning using checkers”, Samuel - - 10 10 -
2065 “Neuronlike elements that can solve difficult...”, Barto+Sutton - - 8 - -
2066 “Practical issues in TD learning”, Tesauro - - 9 9 -
2071 “Pattern classification and scene analysis”, Duda+Hart - 4 7 7 -
2075 “Classification and regression trees”, Breiman+al - 2 5 4 -
2117 “UCI repository of machine learning databases”, Murphy+Aha - 7 - 8 -
2174 “Irrelevant features and the subset selection...”, John+al - 8 - - -
2184 “The CN2 induction algorithm”, Clark+Niblett - 6 - - -
2222 “Probabilistic reasoning in intelligent systems”, Pearl - 10 - - -

One might think that this variability is intrinsic to the problem and
hence unavoidable, but this is not the case, as shown by the results
from the PageRank algorithm, which are much more stable:
PageRank results on Cora ML papers ( ):
1 “Genetic Algorithms in Search, Optimization and...”, Goldberg 1 1 1 1 1
2 “Learning internal representations by error...”, Rumelhart+al 2 2 2 2 2
3 “Adaptation in Natural and Artificial Systems”, Holland 3 5 6 4 5
4 “Classification and Regression Trees”, Breiman+al 4 3 5 5 4
5 “Probabilistic Reasoning in Intelligent Systems”, Pearl 5 6 3 6 3
6 “Genetic Programming: On the Programming of ...”, Koza 6 4 4 3 6
7 “Learning to Predict by the Methods of Temporal ...”, Sutton 7 7 7 7 7
8 “Pattern classification and scene analysis”, Duda+Hart 8 8 8 8 9
9 “Maximum likelihood from incomplete data via...”, Dempster+al 10 9 9 11 8
10 “UCI repository of machine learning databases”, Murphy+Aha 9 11 10 9 10
11 “Parallel Distributed Processing”, Rumelhart+McClelland - - - 10 -
12 “Introduction to the Theory of Neural Computation”, Hertz+al - 10 - - -

These results are discussed in more detail in Section 6. It should be
stated at the outset, however, that our conclusion is not that HITS
is unstable while PageRank is stable. In fact, in certain web query
experiments, PageRank displays its own perturbation pattern. The
issue to which we direct our attention is more subtle. In order to
understand the stability of either algorithm, we need to consider
issues such as the relationships between multiple eigenvectors and
invariant subspaces, and the effects of a universal resetting proba-
bility. Stability is certainly an important desideratum in algorithms
that identify authoritative or relevant articles, hence these issues
will play an important role in the two new algorithms that we will
present in Section 5. The following are results on the same data
using the new algorithms.
Randomized HITS results on Cora ML papers ( ):
1 “Genetic Algorithms in Search, Optimization...”, Goldberg 1 1 1 1 1
2 “Learning internal representations by error...”, Rumelhart+al 2 2 2 2 2
3 “Probabilistic Reasoning in Intelligent Systems”, Pearl 3 3 3 3 3
4 “Adaptation in Natural and Artificial Systems”, Holland 4 4 5 4 4
5 “Classification and Regression Trees”, Breiman+al 5 5 6 6 5
6 “Genetic Programming: On the Programming of...”, John+al 6 6 4 5 6
7 “Pattern classification and scene analysis”, Duda+Hart 8 7 7 8 10
8 “Maximum likelihood from incomplete data via...”, Dempster+al 7 8 8 9 7
9 “Learning to Predict by the Method of Temporal...”, Sutton 9 9 9 7 8
10 “Introduction to the theory of neural computation”, Hertz+al 10 10 10 10 9

Subspace HITS results on Cora ML papers ( ):
1 “Genetic Algorithms in Search, Optimization...”, Goldberg 1 2 1 1 2
2 “Learning internal representations by error...”, Rumelhart 2 1 2 2 1
3 “Probabilistic Reasoning in Intelligent Systems”, Pearl 3 3 3 3 3
4 “Classification and Regression Trees”, Breiman+al 5 4 5 5 4
5 “Adaptation in Natural and Artificial Systems”, Holland 4 5 6 7 6
6 “Learning to Predict by the Method of Temporal...”, Sutton 6 6 7 6 5
7 “Genetic Algorithms: On the Programming...”, Koza 7 7 4 4 7
8 “Maximum likelihood from incomplete data via...”, Dempster+al 8 8 8 8 8
9 “Pattern classification and scene analysis”, Duda+Hart 9 10 9 11 10
10 “Learnability and the VC dimension”, Blumer+al 11 9 10 10 9
11 “UCI repository of machine learning databases”, Murphy+al 10 - - 9 -

3. OVERVIEW OF HITS AND PAGERANK
Given a collection of web pages or academic papers linking to/citing

each other, the HITS and PageRank algorithms each constructs a
matrix capturing the citation patterns, and determines authorities
by computing the principal eigenvector of the matrix.1

It is worth noting that HITS is typically described as running on

3.1 HITS algorithm
The HITS algorithm [8] posits that an article has high “authority”

weight if it is linked to by many pages with high “hub” weight, and
that a page has high hub weight if it links to many authoritative
pages. More precisely, given a set of web pages (say, retrieved in
response to a search query), the HITS algorithm first forms the -
by- adjacency matrix , whose -element is 1 if page links
to page , and 0 otherwise.2 It then iterates the following equations:

(where “ ” means page links to page ) to obtain the fixed-
points and (with the vectors
renormalized to unit length). The above equations can also be writ-
ten:

(1)

(2)
When the iterations are initialized with the vector of ones ,
this is the power method of obtaining the principal eigenvector of a
matrix [7], and so (under mild conditions) and are the prin-
cipal eigenvectors of and respectively. The “authorita-
tiveness” of page is then taken to be , and likewise for hubs and
.

3.2 PageRank algorithm
Given a set of web pages and the adjacency matrix (defined

previously), PageRank [3] first constructs a probability transition
matrix by renormalizing each row of to sum to . One then
imagines a random web surfer who at each time step is at some web
page, and decides which page to visit on the next step as follows:
with probability , she randomly picks one of the hyperlinks on
the current page, and jumps to the page it links to; with probability
, she “resets” by jumping to a web page picked uniformly and at
random from the collection.3 Here, is a parameter, typically set
to 0.1-0.2. This process defines a Markov chain on the web pages,
with transition matrix , where is the transition
matrix of uniform transition probabilities ( for all ).
The vector of PageRank scores is then defined to be the stationary
distribution of this Markov chain. Equivalently, is the principal
right eigenvector of the transition matrix (see,
e.g. Golub and Van Loan, 1996), since by definition the stationary
distribution satisfies

(3)
a small collection of articles (say retrieved in response to a query),
while PageRank is described in terms of the entire web. Either al-
gorithm can be run in either setting, however, (e.g. [1] reports on
results for both algorithms in the former setting,) and this distinc-
tion does not affect the outcome of our analysis.
[8] discusses several other heuristics regarding issues such as
intra-domain references, which are ignored here for simplicity (but
are used in our experiments). See also Bharat and Henzinger [2] for
other improvements to HITS. It should be noted that none of these
fundamentally change the spirit of the eigenvector calculations un-
derlying HITS.
There are various ways to treat the case of pages with no out-
links (leaf nodes). In this paper we utilize a particularly simple
approach—upon reaching such a page, the web surfer picks the
next page uniformly at random. This means that if a row of has
all zero entries, then the corresponding row of is constructed to
have all entries equal to . The PageRank algorithm described
in [12] utilizes a different reset distribution upon arriving at a leaf
node. It is possible to show, however, that every instantiation of
our variant of the algorithm is equivalent to an instantiation of the
original algorithm on the same graph with a different value of the
reset probability.
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Figure 1: Jittered scatterplot of hyperlink graph.

The asymptotic chance of visiting page , that is, , is then taken
to be the “quality” or authoritativeness of page .

4. ANALYSIS OF ALGORITHMS
We begin with a simple example showing how a small addition to

a collection of web pages can result in a large change to the eigen-
vectors returned. Suppose we have a collection of web pages that
contains 100 pages linking to http://www.algore.com/, and
another 103 linking to http://www.georgewbush.com. The
adjacency matrix has all zeros except for the two columns cor-
responding to these two web pages, therefore the principal eigen-
vector will have non-zero values only for algore.com and
georgewbush.com. Figure 1(a) presents a jittered scatterplot of
links to these two web pages, along with the first two eigenvectors.
(Only the non-zero portions of the eigenvectors are shown.) Now,
suppose five new web pages trickle into our collection, which hap-
pen to link to both algore.com and georgewbush.com. Fig-
ure 1(b) shows the new plot, and we see that the eigenvectors have
changed dramatically, with the principal eigenvector now near the

line. Thus, a relatively small perturbation to our collection has
caused a large change to the eigenvectors.4 If this phenomenon is
pervasive, then it needs to be addressed by any algorithm that uses
eigenvectors to determine authority.

4.1 Stability of HITS
It is possible to give fairly precise characterizations of when

HITS will be sensitive to small perturbations. HITS uses the princi-
pal eigenvector of to determine authorities. It turns out
that the algorithm’s stability to small perturbations is determined
by the eigengap of , which is defined to be the difference be-
tween the biggest and the second biggest eigenvalues. (Recall that,
if , then is an eigenvector of the matrix , and
the corresponding eigenvalue.) In the sequel, we use a tilde to

denote perturbed quantities. (For instance, denotes a perturbed
version of .) Our stability results are summarized in the following
two theorems:
THEOREM 1. Let be given. Let be the principal

eigenvector and the eigengap of . Assume the maximum out-
degree of every web page is bounded by . For any , suppose
we perturb the web/citation graph by adding or deleting at most
links from one page, where , where

. Then the perturbed principal eigenvector of the
perturbed matrix satisfies:

(4)

There is nothing special about the number 5 here; a smaller num-
ber also results in relatively large swings of the eigenvectors. Re-
placing 5 with 1, 2, 3, and 4 causes the principal eigenvector to lie
at 73, 63, 58 and 55 degrees, respectively.

THEOREM 2. Suppose is a symmetric matrix with eigengap
. Then there exists a perturbation5 to that causes a large
( ) change in the principal eigenvector.
Proofs of these Theorems are given in [10]. So, if the eigen-

gap is big, HITS will be insensitive to small perturbations. If it
is small then there may be a small perturbation that can dramati-
cally change its results. Specifically, if the eigengap is small, then
a small perturbation may cause the principal eigenvector and the
secondary eigenvectors to swap places. This causes the “flipping”
phenomenon discussed in Section 6.

4.2 Stability of PageRank
For PageRank, we have the following stability result:
THEOREM 3. Let be given, and let be the principal right

eigenvector of . Let articles/pages
be changed in any way, and be the corresponding new transition
matrix. Then the new PageRank scores satisfies:

(5)

Thus, assuming is not too close to 0, this means that if the
perturbed/modified web pages did not have high overall PageR-
ank scores (as measured with respect to the unperturbed PageRank
scores ), then the perturbed PageRank scores will not be far from
the original.
The full proof of Theorem 3 is given in [10]. But since the in-

tuitions from PageRank will shortly be used to design changes to
HITS to improve its stability, we sketch the proof of Theorem 3 in
the remainder of this section. (This may be safely skipped on a first
reading.)
Imagine the PageRank random surfer starting from a randomly

chosen web page, and following hyperlinks at random to take a
random walk of steps on the graph. We take the chance
of a web page being visited on a typical step under this random
walk procedure to be the PageRank score of that page.6 Now, sup-
pose that someone changes pages ; in particular, these
pages may now link to completely different pages than they had

previously. What is the chance that our random surfer will even
notice that these pages have been changed? When taking a random
walk on the new graph, some fraction of the time the user will visit
some of these perturbed pages, and some fraction of the time the
random walk will only visit the unperturbed pages. If we had been
taking the random walk on the original (unperturbed) graph, then
on a typical step, the chance of visiting the perturbed page is
—this was, after all, the definition of a page’s PageRank score.

So the chance of visiting any of the perturbed pages on a typical
time step is at most . But the user is taking steps alto-
gether, so the chance of visiting any of the perturbed pages at some
point on the walk is at most .
This means that, with chance , a random -step

walk taken in the original (unperturbed) graph “would have been
exactly the same” random walk as if we had instead run it on the
perturbed graph. More precisely, the distribution over -step ran-
dom walks in both graphs differ from each other by at most about

(in “variational distance”), and hence the PageRank

More formally, there exists a perturbed version of , denoted ,
so that , where is the Frobenius norm.
Under the “real” PageRank algorithm, the chance of the user “re-
setting” or “quitting” is on each step, which means that number
of steps until the next reset follows a geometric distribution with
mean . To simplify our discussion, we have imagined here that
the reset occurs after exactly steps.
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scores (which are just the distributions induced by these walks on
web pages) in both graphs must also be similar.
The formal version of this proof uses uses a coupled Markov

chains argument, and is given in [10]. But to summarize, so long
as the perturbed pages have small total PageRank score, then the
chance of them being visited and hence affecting an -step ran-
dom walk is small and only on the order . Note that
as the reset probability is decreased, the length of the random
walks becomes large, and the chance of visiting the perturbed pages
increases again. Thus, we should expect PageRank with small to
become more sensitive to perturbations; this is a hypothesis that
will later be explored in our experiments.

5. TWO NEW ALGORITHMS

5.1 Randomized HITS
The preceding discussion suggests a natural way of designing a

random-walk based algorithm that is similar in spirit to HITS (and
finds both hubs as well as authorities), and that, like PageRank, is
stable to small perturbations. It is as follows:
Let there be a random surfer who is able to follow hyperlinks in

both the forward and in the backward directions. More precisely,
the surfer starts from a randomly chosen page, and visits a new
web page at every time step. Every time step, he tosses a coin with
bias , and if the coin lands heads, he jumps to a new web page
chosen uniformly at random. If the coin lands tails, then he checks
if it is an odd time step or an even time step. If it is an odd time
step, then he follows a randomly chosen out-link from the current
page; if it is an even time step, then he traverses a random in-link of
the current page. Thus, the random surfer alternately follows links
in the forwards and in the backwards directions, and occasionally
“resets” and jumps to a page chosen uniformly at random.
This process defines a random walk on web pages, and the sta-

tionary distribution on odd time steps is defined to be the authority
weights. (Informally, let be a very large odd number, chosen large
enough that the random walk has converged to its stationary distri-
bution by steps. The authority weight of a page is the chance that
the surfer visits that page on time step .) Similarly, the stationary
distribution on even time steps is defined to be the hub weights.
Mathematically, these quantities can also be written:

where is the vector of all ones, is the same as with its rows
normalized to sum to 1, and is with its columns normalized
to sum to 1. Note the similarity of these to the original HITS update
rules (Equations 1 and 2). It is straightforward to show that iterating
these equations will cause and to converge to the odd-
step and the even-step stationary distributions.7 We refer to this
method as “Randomized HITS.” By analogy to the proof of the
stability of the PageRank algorithm [10] reviewed in the previous
section, it is straightforward to establish related conditions under
which Randomized HITS is insensitive to small perturbations.

5.2 Subspace HITS
There is a second way of improving the stability of HITS. Some-

times, individual eigenvectors of a matrix may not be stable, but
subspaces spanned by eigenvectors may be. For example, it is pos-
sible that the subspace spanned by (say) the first two eigenvectors

Technically, this calculates not the stationary distribution, but
times the stationary distribution, where is the number of pages.

can be stable, even though the two eigenvectors may rotate freely
within this subspace. (Recall, for instance, the example in Figure 1;
under our perturbation, our the first two eigenvectors changed sig-
nificantly, but the subspace they span was not changed at all.)
More generally, if the eigengap between the -th and -st

eigenvalues is large, then the subspace spanned by the first eigen-
vectors will be stable [15]. Thus, one might consider refraining
from examining individual eigenvectors, but instead treating them
as a basis for a subspace to obtain authority scores.8 But more gen-
erally, we may even want to allow the case of —so that we
use all the eigenvectors—but weight them appropriately, so that the
ones corresponding to the larger eigenvalues are given more im-
portance. Consider the following procedure for calculating author-
ity scores, where is a non-negative, monotonically increasing
function that we will specify later:
1. Find the first eigenvectors of (or

for hub weights), and their corresponding eigenvalues
.9

2. Let be the -th basis vector (whose -th element is 1, and
all other elements 0). Calculate the authority scores

. (This is the square of the length of the
projection of onto the subspace spanned by ,
where the projection in the direction is “weighted” by

.)
There are many choices for : If we take when

and otherwise, we get back the original HITS
algorithm; taking and corresponds to simple ci-
tation counting; if we take , the authority weight of a
page becomes . In the last case, the authority weights de-
pend only on the subspace spanned by the eigenvectors, but not
on the eigenvectors themselves (see, e.g., [7]). This new method
thus gives a simple yet principled way of automatically combining
multiple eigenvectors into a single measure of authoritativeness for
each page. We call this second method Subspace HITS. In general,
subspaces are more stable than individual eigenvectors (see [15]),
therefore it is reasonable to expect that Subspace HITS will do bet-
ter than HITS in certain cases. More specifically, if we use all the
eigenvectors , then we have the following, strong, stability
guarantee that requires no assumptions on the eigenvalues:

THEOREM 4. Let be Lipschitz continuous with Lipschitz con-
stant ,10 and let . Let the co-citation matrix be perturbed
according to , where ( symmetric). Then
the change in the vector of authority scores is bounded as follows:

(6)

The proof of the theorem is given in the Appendix. Note that, for
computational reasons, it will frequently be more practical to use

eigenvectors as an approximation to using the full set (which
is reasonable since this corresponds to dropping the eigenvectors
with the smallest weight). In subsequent experiments, we will take

and .
Note that Kleinberg also discusses using multiple eigenvectors,
but proposes asking the user to interpret individual eigenvectors
rather than combining the eigenvector projections into a single au-
thority score as we do here.
In the case of repeated eigenvalues, we assume the eigenvectors
are chosen orthogonal to each other.
Formally, this means that, for all , we have that

. This is certainly satisfied if has a first deriva-
tive bounded by . Note that, even if does not have uniformly
bounded derivatives over the entire real line, the theorem will also
hold so long as the derivatives are bounded within the applicable
domain.
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6. EXPERIMENTS
We now present experimental results comparing HITS, PageR-

ank, Randomized HITS, and Subspace HITS. We use both aca-
demic paper citation data from the Cora database and web page
linkage data built from actual queries. Section 6.1 focuses on the
stability of the four algorithms, and Section 6.2 discusses the “di-
versity” of pages returned in the web query experiments.

6.1 Stability Results
Our first experiment used all of the Artificial Intelligence (AI)

papers in Cora. Our results largely replicated those of [5], with
HITS returning several Genetic Algorithms (GA) papers as the top-
ranked ones. These results, however, were very sensitive to pertur-
bation, and indeed under perturbation we often found that HITS
omitted the GA papers and returned as top-ranked documents sem-
inal papers from broader AI areas. In contrast, PageRank almost
always returned general AI papers as the top ranked ones, and the
results were very stable to perturbation.
HITS results on all Cora AI papers:
1 “Genetic Algorithms in Search, Optimization...”, Goldberg 4 1 1 4 24
2 “Adaptation in Natural and Artificial Systems”, Holland 7 2 2 5 460
3 “Genetic programming: On the programming of...”, Koza 19 3 3 11 484
4 “Analysis of the behavior of a class of (GA)”, De Jong 92 4 4 94 566
5 “Uniform crossover in genetic algorithms”, Syswerda 389 5 5 418 793
6 “Artificial Intelligence through simulated evolution”, Fogel+al 170 8 9 211 655
7 “A survey of evolution strategies”, Back+al 408 7 8 723 788
8 “Optimization of control parameters for (GA)”, Grefenstette 505 6 6 887 934
9 “The GENITOR algorithm and selection pressure”, Whitley 362 9 7 284 756
10 “Genetic Algorithms + Data Structures = ...”, Michalewicz 340 11 10 292 643
11 “Genetic Programming II: Automatic Discovery”, Koza - 10 - - -
2060 “Learning internal representations by error...”, Rumelhart+al 2 - - 3 -
2061 “Learning to Predict by temporal...”, Sutton 5 - - 6 -
2063 “Classification and Regression Trees”, Breiman+al 1 - - 1 1
2065 “Pattern classification and scene analysis”, Duda+Hart 3 - - 2 2
2087 “UCI repository of machine learning databases”, Murphy+al 8 - - 7 3
2100 “Irrelevant features and subset selection”, John+al 10 - - 9 4
2110 “Very simple classification rules perform well”, Holte - - - 10 5
2111 “Probabilistic Reasoning in Intelligent Systems”, Pearl 6 - - 8 -
2130 “The CN2 induction algorithm”, Clark+al 9 - - - -
2134 “Learning Boolean Concepts...”, Almuallim+Dietterich - - - - 7
2139 “The MONK’s problems: A performance...”, Thrun - - - - 6
2189 “C4.5: Programs for Machine Learning”, Quinlan - - - - 8
2263 “Multi-interval discretization of continuous...”, Fayyad+al - - - - 9
2304 “A conservation law for generalization performance”, Schaffer - - - - 10
PageRank results on all Cora AI papers ( ):
1 “Classification and Regression Trees”, Breiman+al 1 2 3 2 2
2 “Genetic Algorithms in search, optimization...”, Goldberg 3 1 2 1 1
3 “Probabilistic Reasoning in Intelligent Systems”, Pearl 2 3 1 3 4
4 “Learning internal representations by error...”, Rumelhart+al 4 4 4 4 3
5 “Adaptation in natural and artificial systems”, Holland 5 5 5 5 5
6 “Pattern classification and scene analysis”, Duda+Hart 6 7 6 6 6
7 “A robust layered control system for a mobile...”, Brook+al 7 6 7 7 10
8 “Genetic Programming: On the programming of...”, Koza 10 9 9 8 7
9 “Learning to predict by the methods of temporal...”, Sutton 8 8 8 9 9
10 “Maximum likelihood from incomplete data via...”, Dempster+al 9 10 10 10 8

HITS seemed to be unstable primarily in its flipping between
Genetic Algorithms (GA) papers and other papers. To attempt to
create a slightly more favorable environment for HITS, we repeated
the above experiment, but keeping only the AI papers that were not
GA papers. We obtained:
HITS results on subset of Cora AI papers (1st eigenvector):
1 “Classification and Regression Trees”, Breiman+al 1 1 1 1 1
2 “Pattern classification and scene analysis”, Duda+Hart 2 2 3 2 2
3 “UCI repository of machine learning databases”, Murphy+Aha 4 3 7 3 3
4 “Learning internal representations by error...”, Rumelhart+al 3 13 2 28 20
5 “Irrelevant features and the subset selection problem”, John+al 7 4 12 4 4
6 “Very simple classification rules perform well...”, Holte 8 5 15 5 5
7 “C4.5: Programs for Machine Learning”, Quinlan 11 10 14 10 6
8 “Probabilistic Reasoning in Intelligent Systems”, Pearl 6 459 4 462 461
9 “The CN2 induction algorithm”, Clark+Niblett 9 54 11 78 105
10 “Learning Boolean Concepts...”, Almuallim+Dietterich 14 11 34 9 13
11 “The MONK’s problems: A performance comparison...”, Thrun - 9 - 6 7
12 “Inferring decision trees using the MDS Principle”, Quinlan - 8 - 7 8
13 “Multi-interval discretization of continuous...”, Fayyad+Irani - - - - 10

14 “Learning relations by pathfinding”, Ricchards+Moon - 6 - - -
15 “A conservation law for generalization performance”, Schaffer - 7 - 8 -
20 “The Feature Selection Problem: Traditional...”, Kira+Randall - - - - 9
21 “Maximum likelihood from incomplete data via...”, Dempster+al 10 - 5 - -
23 “Learning to predict by the method of temporal...”, Sutton 5 - 6 - -
36 “Introduction to the theory of neural computaion”, Hertz+al - - 8 - -
49 “Explanation-based generalization: a unifying view”, Mitchell - - 10 - -
282 “A robust layered control system for a mobile robot”, Brooks - - 9 - -

HITS results on subset of Cora AI papers (2nd eigenvector):
1 “Learning to predict by the methods of temporal...”, Sutton 1 1 4 4 6
2 “Learning internal representations by error...”, Rumelhart+al 45 2 856 2 4
3 “Probabilistic Reasoning in Intelligent Systems”, Pearl 109 3 33 1 5
4 “A robust layered control system for a mobile...”, Brook+al 2 4 1 6 1
5 “STRIPS: A New Approach to the Application of...”, Fikes+al 4 5 2 8 2
6 “Learning to act using real-time dynamic programming”, Barto+al 5 6 9 11 75
7 “Neuronlike elements that can solve difficult...”, Barto+al 7 7 34 17 81
8 “Integrated Architectures for Learning, Planning...”, Sutton 6 11 13 14 74
9 “Explanation-based generalization: a unify T. M. Mitchell, 37 8 25 7 27
10 “Practical issues in temporal difference learning”, Tesauro 10 9 36 29 78
12 “Maximum likelihood from incomplete data via...”, Dempster+al - - - 9 -
13 “Automatic programming of behavior-based robots”, Mahadevan+al 9 - - - -
14 “An implementation of a theory of activity”, Agre+al - - 6 - -
16 “Pattern classification and scene analysis”, Duda+Hart - - 5 5 -
18 “SOAR: An architecture of general intelligence”, Laird+al - - - - 3
19 “Introduction to the theory of neural computation”, Hertz+al - - - 10 -
28 “Reactive Reasoning and Planning”, Georgeff+al - - 8 - 8
32 “Classification and Regression Trees”, Breiman+al 3 10 3 3 -
4233 “UCI repository of machine learning databases”, Murphy+al 8 - 7 - -

We see that, apart from the top 2-3 ranked papers, the results are
rather unstable. For example, Pearl’s book is originally ranked 8-th,
but drops to rank 459 on the second trial. Similarly, Brooks’ paper
has jumped up from rank 282 to rank 9 on trial three. The problem
persists in the second eigenvector. However, this variability is not
intrinsic to the problem, as shown by PageRank’s results:
PageRank results on subset of Cora AI papers ( ):
1 “Classification and Regression Trees”, Breiman+al 1 1 1 1 2
2 “Probabilistic Reasoning in Intelligent Systems”, Pearl 3 2 2 2 1
3 “Learning internal representations by error...”, Rumelhart+al 2 3 3 3 3
4 “Pattern classification and scene analysis”, Duda+Hart 4 4 4 4 4
5 “A robust layered control system for a mobile robot”, Brooks 5 6 7 5 5
6 “Maximum likelihood from incomplete data via...’ Dempster+al 6 7 6 6 6
7 “Learning to Predict by the Method of Temporal...”, Sutton 7 5 5 7 7
8 “UCI repository of machine learning databases”, Murphy+Aha 8 9 9 9 11
9 “Numerical Recipes in C”, Press+al 10 12 8 11 8
10 “Parallel Distributed Processing”, Rumelhart+al 9 14 13 10 9
12 “An implementation of a theory of activity”, Agre+Chapmanre - 8 10 8 -
13 “Introduction To The Theory Of Neural Computation”, Hertz+al - 10 - - -
22 “A Representation and Library for Objectives in...”, Valente+al - - - - 10

The largest change in a document’s rank is a drop from 10 to
14—these results are much more stable than for HITS. Closer ex-
amination of the HITS’ authority weights reveals that its jumps in
rankings are not merely small fluctuations in authority weights, but
are indeed large changes. The PageRank scores, on the other hand,
tend to remain fairly stable.
We next present some results using Randomized HITS and Sub-

space HITS. Both are more stable than HITS, though Subspace
HITS seems to perform a little worse than PageRank.
Randomized HITS results on subset of Cora AI papers ( ):
1 “Learning internal representations by error...”, Rumelhart+al 1 3 3 2 1
2 “Probabilistic Reasoning in Intelligent Systems”, Pearl 4 1 1 1 2
3 “Classification and Regression Trees”, Breiman+al 2 2 2 3 4
4 “Pattern classification and scene analysis”, Duda+Hart 3 4 4 4 3
5 “Maximum likelihood from incomplete data via...”, Dempster+al 5 6 6 6 5
6 “A robust layered control system for a mobile robot”, Brook+al 6 5 5 5 6
7 “Numerical Recipes in C”, Press+al 7 7 7 7 7
8 “Learning to Predict by the Method of Temporal...”, Sutton 8 8 8 8 8
9 “STRIPS: A New Approach to ... Theorem Proving”, Fikes+al 9 10 10 10 15
10 “Introduction To The Theory Of Neural Computation”, Hertz+al 11 11 9 9 9
11 “Stochastic relaxation, gibbs distributions, ...”, Geman+al 10 9 - - -
12 “Introduction to Algorithms”, Cormen+al - - - - 10

Subspace HITS results on subset of Cora AI papers ( ):
1 “Probabilistic Reasoning in Intelligent Systems”, Pearl 4 1 1 1 4
2 “Classification and Regression Trees”, Breiman+al 2 2 2 3 3
3 “Learning internal representations by error...”, Rumelhart+al 1 3 3 2 1
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4 “A robust layered control system for a mobile...”, Brooks 3 4 4 4 2
5 “Pattern classification and scene analysis”, Duda+hart 5 9 5 7 7
6 “Maximum likelihood from incomplete data via...”, Dempster+al 6 7 7 6 6
7 “Learning to predict by the method of emporal...”, Sutton 8 6 6 5 5
8 “STRIPS: A new approach to ... Theorem Priving...”, Fikes+al 7 5 8 8 9
9 “Explanation-based generalization: a unifying view”, Mitchell+al 9 8 9 9 8
10 “Learnability and the VC dimension”, Blumer+al 50 12 210 11 10
11 “Explanation-Based learning: An alternative view”, DeJong+al - 10 10 10 -
12 “UCI repository of machine learning databases”, Murphy+Aha 10 - - - -

To compare the four algorithms more extensively, we performed
tests on 50 web queries on various topics (constructed by examin-
ing actual search engine queries). Kleinberg [8] describes a method
for obtaining a collection of web pages on which to run HITS. We
use exactly the method described there, and perturb the web page
collection in a natural way.11
Some examples of query results are shown in the following four

tables. (A “*” indicates a page originally in the top 10, but deleted
by the perturbation.) Notice that, in the table below, with the excep-
tion of one trial, all of the original top 10 documents were “flipped”
with something originally lower in rank. As discussed in Sections 4
and 6.2, this flipping phenomenon can arise from perturbations to
the principal eigenvalue, which in turn causes the principal eigen-
vector to swap places with other eigenvectors.

HITS results on query “neural networks”: [long URLs truncated]
1 http://www.neci.nec.com/ * 1 * * *
2 http://researchindex.org/ * 2 * * *
3 http://citeseer.nj.nec.com/cs/ * 3 * * *
4 http://citeseer.nj.nec.com/terms.html * 4 * * *
5 http://citeseer.nj.nec.com/yao93review.html * 5 * * *
6 http://citeseer.nj.nec.com/17901.html * 6 * * *
7 http://citeseer.nj.nec.com/yao91optimizat * 7 * * *
8 http://citeseer.nj.nec.com/yao91simulated * 8 * * *
9 http://citeseer.nj.nec.com/yao93evolution * 9 * * *
10 http://citeseer.nj.nec.com/yao99evolving * 10 * * *
12 http://www.ieee.org/ 1 - 1 1 -
13 http://www.cs.washington.edu/research/jai 8 - 5 - -
14 ftp://ftp.sas.com/pub/neural/FAQ.html 4 - 4 4 -
35 http://www.ieee.org/nnc/ 2 - 2 2 -
36 http://www.okstate.edu/elec-engr/faculty/ 3 - 3 3 -
37 http://www.icsi.berkeley.edu/˜jagota/NCS/ 5 - - 5 -
38 http://www.elsevier.nl/ 6 - - - -
39 http://www.inns.org/ 7 - 6 6 -
40 http://www.ai.univie.ac.at/oefai/nn/nngro 10 - - 7 -
41 http://synapse2.eng.wayne.edu/tpage3.html 9 - 7 - -
44 http://www.emsl.pnl.gov:2080/docs/cie/neu - - - 10 -
48 http://www.classify.org/safesurf/ - - 8 8 -
49 http://www.weburbia.com/safe/ratings.htm - - 9 9 -
50 http://www.nd.com/ - - 10 - -
64 http://www.kcl.ac.uk/neuronet/ - - - - 6
86 http://www.mitgmbh.de/ - - - - 5
195 http://www.kcl.ac.uk/ - - - - 7
230 http://www.kcl.ac.uk/neuronet/about/exec- - - - - 8
231 http://www.kcl.ac.uk/neuronet/about/map/ - - - - 9
232 http://www.kcl.ac.uk/neuronet/about/roadm - - - - 10
381 http://www.ubcom.net/ - - - - 1
382 http://www.brd.net/brd-cgi/sendemail/send - - - - 2
383 http://www.amazon.de/exec/obidos/redirect - - - - 3
384 http://amazon.de/exec/obidos/ASIN/3528064 - - - - 4

The PageRank algorithm does not exhibit “flipping.” The following
table presents PageRank results on the same query. With a few
exceptions, the rankings are more stable under perturbation.
PageRank results on query “neural networks” ( ):
1 http://www.neci.nec.com/ * 1 * * *
2 http://researchindex.org/ * 2 * * *
3 http://www.ieee.org/ 1 4 1 1 1

Kleinberg [8] first uses a text-based web search engine
(www.altavista.com in our case) to retrieve 200 documents to form
a “root set,” which is then expanded (and further processed, for ex-
ample to ignore intra-domain references) to define the web-graph
on which HITS operates. Our perturbations are arrived at by ran-
domly deleting 20% of the root set (i.e. imagining that the web
search engine had only returned 80% of the pages it actually did),
and then following Kleinberg’s procedure.

4 http://mathworld.wolfram.com/ 5 3 * 3 5
5 http://www.wolfram.com/ * 5 246 * *
6 http://www.cmu.edu/ 2 6 2 2 4
7 http://192.38.71.109/htdig/search thor.ht 3 * 3 * 2
8 http://www.unibo.it/ 4 9 4 * 3
9 http://citeseer.nj.nec.com/cs/ * 7 * * *
10 http://citeseer.nj.nec.com/terms.html * 8 * * *
11 http://www.okstate.edu/elec-engr/faculty/ 6 10 5 4 -
13 http://www.ubcom.net/ 7 - 6 5 6
14 http://www.brd.net/brd-cgi/sendemail/send 8 - 7 6 7
15 http://dmoz.org/about.html 9 - 8 7 -
16 http://ads.admonitor.net/clicktrack.cgi?F 10 - 9 8 -
17 http://www.deis.unibo.it/ - - 10 - 8
18 http://www.cs.cmu.edu/ - - - 9 9
22 http://www.epfl.ch/ - - - - 10
24 http://www.mathworks.com/ - - - 10 -

Results for Randomized HITS and Subspace HITS are listed be-
low. Similar to the Cora results, both Randomized HITS and Sub-
space HITS seem to have comparable performance to PageRank.
Randomized HITS results on query “neural networks” ( ):
1 http://www.neci.nec.com/ * 1 * * *
2 http://researchindex.org/ * 2 * * *
3 http://www.ieee.org/ 1 3 1 1 1
4 http://www.cmu.edu/ 2 4 2 2 6
5 http://192.38.71.109/htdig/search thor.ht 3 * 3 * 2
6 http://www.ubcom.net/ 4 5 4 3 3
7 http://www.brd.net/brd*cgi/sendemail/send 5 6 5 4 4
8 http://dmoz.org/about.html 6 7 6 5 *
9 http://ads.admonitor.net/clicktrack.cgi?F 7 8 7 6 *
10 http://www.ieee.org/nnc/ 8 9 8 8 *
11 http://www.unibo.it/ 9 10 9 - 5
12 http://www.cs.cmu.edu/ 10 - 10 7 8
13 http://www.deis.unibo.it/ - - - - 7
14 ftp://ftp.sas.com/pub/neural/FAQ.html - - - 9 -
15 http://www.erudit.de/erudit/index.htm - - - - 9
16 http://www.iau.dtu.dk/˜jj/address.html - - - - 10
17 http://www.okstate.edu/elec-engr/faculty/ - - - 10 -

Subspace HITS results on query “neural networks” ( ):
1 http://www.neci.nec.com/ * 1 * * *
2 http://researchindex.org/ * 2 * * *
3 http://www.ieee.org/ 1 3 1 1 1
4 http://www.cmu.edu/ 2 4 2 2 5
5 http://www.ubcom.net/ 3 5 3 3 2
6 http://www.brd.net/brd-cgi/sendemail/send 4 6 4 4 3
7 http://dmoz.org/about.html 5 7 5 5 *
8 http://ads.admonitor.net/clicktrack.cgi?F 6 8 6 6 *
9 http://www.ieee.org/nnc/ 7 9 7 7 *
10 http://www.unibo.it/ 8 10 8 * 4
11 http://www.deis.unibo.it/ 9 - 9 - 6
12 ftp://ftp.sas.com/pub/neural/FAQ.html - - - 9 -
13 http://mathworld.wolfram.com/ - - - 8 10
14 http://www.erudit.de/erudit/index.htm 10 - 10 - 8
15 http://www.iau.dtu.dk/˜jj/address.html - - - - 9
16 http://www.slac.stanford.edu/˜rhatcher/ - - - 10 -
20 http://www.cs.cmu.edu/ - - - - 7

Note that rankings for all four algorithms appear less stable than
those from the Cora dataset. This is largely an artifact of the way
we perturb the web datasets. In the Cora experiments, removing
a paper from the dataset does not remove any of the papers cited
by or citing it. In the web query case, each deleted root page also
removes its surrounding link structure. (See footnote 11.) This
type of perturbation more accurately models the scenario of search
engines missing certain pages, but is also a much harsher form of
perturbation in which a large component of the graph can be re-
moved all at once. Under different perturbation models, we also
obtain results closer to the Cora ones (for instance, in which there
was much less “flipping” of HITS’ eigenvectors.)
To get a better idea of the flipping pattern of eigenvectors, we

count the number of top ten pages which drop in ranking drastically
in each trial. (Because our collections are perturbed by deletions
rather than insertions, large rises in ranking are rare for all four al-
gorithms. Therefore large drops in ranking are more interesting.)
There are 50 total web queries, and 5 trials are performed for each
query. The histogram counts in Figure 2 represent the number of
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Figure 2: “Flip” count histograms for the four algorithms,
showing how frequently pages originally in the top 10 fall out
of the top 20 after perturbation, for .

HITS Subspace HITS PageRank Rand HITS
0.2 21.20% 16.56% 17.00% 14.08%
0.1 21.20% 16.56% 18.40% 13.88%
0.05 21.20% 16.56% 19.96% 13.92%
0.02 21.20% 16.56% 20.52% 14.16%
0.01 21.20% 16.56% 19.72% 14.40%

Table 1: Expected percentage of rank drops with decreasing .

top ten pages that drop below rank 20, i.e., if 8 out of the top 10
pages drop below rank 20 in a certain trial for PageRank, then bin
8 in the PageRank histogram gets incremented by 1. We call these
plots “flip histograms.” In Figure 2, we exclude the 0 bin in order
to highlight the trials where something goes wrong. From the fig-
ure, we can see that HITS is much more likely than PageRank and
Randomized HITS to have large numbers of pages simultaneously
drop to low rankings, though PageRank and Randomized HITS are
also more likely to have at least one such drop on any given trial.
More specifically, out of 250 trials, 8 to 10 pages drop together in
49 HITS trials; this number increases to 73 for the second eigen-
vector of HITS. The number of trials on which this occurs is 4 for
both PageRank and Randomized HITS. For Subspace HITS, when

or , the histogram is similar to PageRank
and Randomized HITS. But as we change to (so that
it grows faster with ), it behaves increasingly similarly to HITS.
This is no surprise given that, as the degree of increases, Sub-
space HITS gives increasing weight to the principal eigenvector.
Note that a flip histogram is in fact the empirical distribution of

the number of rank drops in a trial. In Table 1, we show the effect of
the reset probability on the expectation of the percentage of pages
that suffer rank drops under this empirical distribution. For PageR-
ank, rank drop expectations increase as increases, whereas for
Randomized HITS, the expectation only fluctuates slightly. Since
HITS and Subspace HITS do not involve resetting, their expecta-
tions are not affected.

6.2 Multiple Connected Components
A closer examination of the web query results draws our atten-

tion to the question of the “diversity” of the pages returned. Ignor-
ing the stability issue for now, we notice that the algorithms return
pages with a different “range” in the number of domains. The ta-
bles below present results from HITS and PageRank on the query
“SQL tutorial.” All the top ten pages returned by HITS are from the
same site, and are therefore not very useful even had the rankings
been stable.12 PageRank, on the other hand, returns a wider variety

Pages from the same site tend to be heavily linked to each other,
and therefore are known to “trap” authority and hub scores. Avoid-
ing “rank traps” is one of the original design motivations behind
PageRank [3]. Kleinberg [8] suggests avoiding this problem by

of web pages. The question of variety is probably not as crucial
as stability, but the example leads us to consider the different algo-
rithms’ behavior when there are multiple “connected components”
in the linkage graph.
HITS results on query “sql tutorial”:
1 http://www.internet.com/ 1 1 36 14 1
2 http://www.internet.com/sections/download 2 2 37 15 2
3 http://www.internet.com/sections/internat 3 3 38 16 3
4 http://www.internet.com/sections/isp.html 4 4 39 17 4
5 http://www.internet.com/sections/it.html 5 5 40 18 5
6 http://www.internet.com/sections/marketin 6 6 41 19 6
7 http://www.internet.com/sections/news.htm 7 7 42 20 7
8 http://www.internet.com/sections/resource 8 8 43 21 8
9 http://www.internet.com/sections/stocks.h 9 9 44 22 9
10 http://www.internet.com/sections/webdev.h 10 10 45 26 10
2033 http://welcome.hp.com/country/us/eng/term - - 1 1 -
2034 http://welcome.hp.com/country/us/eng/welc - - 2 2 -
2035 http://welcome.hp.com/country/us/eng/howt - - 3 3 -
2036 http://welcome.hp.com/country/us/eng/priv - - 4 4 -
2037 http://welcome.hp.com/country/us/eng/prod - - 5 5 -
2038 http://welcome.hp.com/country/us/eng/solu - - 6 6 -
2039 http://welcome.hp.com/country/us/eng/supp - - 7 7 -
2040 http://welcome.hp.com/country/us/eng/cont - - 9 9 -
2041 http://www.hp.com/go/search-us-eng/ - - 8 8 -
2042 http://www.hp.com/go/smartfriend/ - - 10 10 -

PageRank results on query “sql tutorial” ( ):
1 http://search.intraware.com/search.html 1 1 1 1 1
2 http://jazz.external.hp.com/ * 1572 1155 2 2
3 http://www.hp.com/go/search-us-eng/ * 2 3 3 3
4 http://www.yahoo.com/ 2 4 2 5 4
5 http://jump.altavista.com/ff.go * 3 4 4 *
6 http://www.sun.com/ 8 10 18 16 22
7 http://www.altavista.com/ 109 5 5 6 132
8 http://www.goto.com/ 3 15 6 22 5
9 http://welcome.hp.com/country/us/eng/term * 20 22 7 6
10 http://welcome.hp.com/country/us/eng/welc * 21 23 8 7
11 http://www.webring.org/cgi-bin/webring?ri 4 - 7 - 8
12 http://www.webring.org/cgi-bin/webring?ri 5 - 8 - 9
13 http://www.webring.org/cgi-bin/webring?ri 6 - 9 - 10
14 http://u.extreme-dm.com/?login=astentec 7 - 10 - -
15 http://v1.nedstatbasic.net/stats?AAlCJgnm 9 - - - -
16 http://welcome.hp.com/country/us/eng/howt - - - 10 -
23 http://www.wiwi.uni-frankfurt.de/ 10 - - - -
42 http://www.sqlcourse.com/ - 6 - 9 -
50 http://www.webreference.com/ - 7 - - -
54 http://ecommerce.internet.com/ - 8 - - -
59 http://www.sqlcourse2.com/ - 9 - - -

A connected component of a graph is a subset of nodes whose
elements are connected via length paths to each other, but
not to the rest of the graph. The eigenvalue of a connected com-
ponent is the largest eigenvalue of (cf. used by
HITS), where , a submatrix of , is the adjacency matrix of
. If a graph has multiple connected components, then the princi-

pal eigenvector of will have non-zero values only for nodes
from the “largest” connected component (more formally the com-
ponent with the largest eigenvalue). (See, e.g. [4].) Therefore, un-
less the eigenvalue is shared among several connected components
(which, as explained in Section 7, would render the eigenvector
unstable), each HITS eigenvector would only represent one part of
the graph. On the other hand, an algorithm with a universal reset-
ting probability obtains its principal eigenvector by concatenating
(and possibly weighting) the results from all of the connected com-
ponents.13 Therefore, PageRank and Randomized HITS return re-
sults from a wider variety of domains, while HITS concentrates its
ignoring intra-domain links to prune down this kind of false au-
thority propagation. We have indeed followed Kleinberg’s design
in our experiments and pruned all links pointing to pages on the
same domain, though multiple links from another domain are still
allowed, and may account for the inclusion of pages from the same
site in our results.
For example, if a graph has two connected components and
, then PageRank run on the entire graph gives the same result

as running it separately on and on , and then concatenating
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HITS Subspace HITS PageRank Rand HITS
0.2 8.59 8.97 9.38 9.49
0.1 8.59 8.97 9.32 9.48
0.05 8.59 8.97 9.26 9.48
0.02 8.59 8.97 9.23 9.44
0.01 8.59 8.97 9.24 9.41

Table 2: Average number of different sites from top 10 pages.

strength on the most popular cluster. Subspace HITS attempts to
broaden its scope by using multiple eigenvectors, so that different
connected components can be included. Of course, the previous
discussion assumes the graph contains more than one connected
component. If the entire graph is connected, then HITS would not
have to worry about any of the above problems. However, empir-
ical data from the web query experiments do indeed suggest the
presence of multiple connected components in the graph. For ex-
ample, consider the query results on “neural networks” presented
in the last section. Without any perturbations, the top two ranked
pages for all four algorithms are www.neci.nec.com and re-
searchindex.org, both of which are removed in trials 1, 3, 4,
and 5. All four algorithms then return www.ieee.org as the top
ranked page in those trials. This is in fact the top ranked page in the
second eigenvector of HITS. All the top ranked pages in the original
principal eigenvector of HITS are from the same removed “cluster,”
whereas PageRank, Randomized HITS, and Subspace HITS also
include pages from other clusters, and as a result suffer less impact
from the cluster’s removal.
Table 2 lists the average number of different sites/domains rep-

resented in the top 10 pages for each algorithm. Note the effect of
decreasing the reset probability : PageRank’s average decreases as
decreases, indicating that the “diversity” of results is decreasing;
Randomized HITS’ diversity also decreases, but not as much. HITS
and Subspace HITS are not affected as neither involves resetting.

7. LSI AND HITS
In this section we descibe an interesting connection between

HITS and Latent Semantic Indexing (LSI) [6] that provides addi-
tional insight into our results (see also [5, 13]). In LSI a collection
of documents is represented as a matrix , where is 1 if doc-
ument contains the th-word of the vocabulary, and 0 otherwise.
LSI computes the left and right singular vectors of (equivalently,
the eigenvectors of and ). For example, the principal
right singular vector, which we denote , has dimension equal to
the vocabulary size, and measures the “strength” of word ’s
membership along the -dimension. The informal hope is that syn-
onyms will be grouped into the same singular vectors, so that when
a document (represented by a row of ) is projected onto the sub-
space spanned by the singular vectors, it will automatically be “ex-
panded” to include synonyms of words in the document, leading to
improved retrieval.
Consider constructing the following citation graph from a set of

documents. Let there be one node for each document and one for
each word. Let each document node link to all the words that ap-
pear in it, and let be the adjacency matrix of this graph. If we ap-
ply HITS to this graph, we find that only the document-nodes have
non-zero hub weights (since the word-nodes do not link to any-
thing) and only the word-nodes have non-zero authority weights.
Moreover, the vector of HITS word authority weights is exactly ,
the first right singular vector found by LSI. In this setup, an author-

the results (weighting ’s nodes’ values by ,
and similarly for , where is the number of web pages in
connected component ).

Original vector Perturbed vectors
1 offici 1 against 1 news
2 kill 2 todai 2 member
3 against 3 talk 3 govern
4 death 4 mondai 4 negoti
5 year 5 report 5 talk
6 govern 6 member 6 peopl
7 israel 7 critic 7 agenc
8 west 8 london 8 report
9 soviet 9 publish 9 israel
10 british 10 american 10 offic
11 isra 11 kill 11 chairman
12 palestinian 12 district 12 meet
13 di 13 peopl 13 isra
14 member 14 fridai 14 u
15 capit 15 british 15 palestinian
16 bank 16 west 16 began
17 communist 17 book 17 newspap
18 london 18 communist 18 condition
19 arab 19 union 19 presid
20 associ 20 death 20 american

Table 3: Authoritative words from AP articles.

itative word is a commonly used word, and connected components
in the linkage graph indicate distinct document topics.
This connection allows us to transfer insight from experiments

on LSI to our understanding of HITS. In this vein, we carry out
an experiment on the Associated Press (AP) portion of the TREC
volume 1 corpus. In order to obtain non-trivial word authorities
the words were stemmed and a stop list was used. We used a vo-
cabulary size of 1500 words and 2000 articles, that had an average
length of 72 words. We first ran LSI/HITS on the entire set of ar-
ticles, keeping the top 20 authority vectors, i.e. the first 20 right
singular vectors. Then we randomly removed 30% of the articles,
and recalculated the authority weights.
The results show sets of authoritative words which are unions

of authoritative words from different topics. As discussed in Sec-
tion 6.2, linear combinations of topics/connected components can
occur when the subcomponents have roughly equal eigenvalues.
Because of the small eigengap, linear combinations of eigenvectors
are much more unstable under perturbation. This is demonstrated
in Table 3, where words from the 13th original eigenvector origi-
nally contains words from both the Israeli-Palestinian middle-east
conflict and British politics, but is split into eigenvectors 13 and 14
under perturbation. In perturbed eigenvector 13, the main topic is
British politics, and words palestinian and israel drop to ranks 59
and 77, respectively; in perturbed eigenvector 14, the main topic is
middle-east conflicts, with the word british dropping to rank 197.
This example also illustrates the danger of defining “semantic

directions” for individual eigenvectors. In the presence of multi-
ple topics/connected components, eigenvectors could be a linear
combination of the authoritative nodes from different topics, and
the combination can be very sensitive to small perturbations. It is
much safer to look at a subspace, as is done in LSI and Subspace
HITS.

8. SUMMARY
In this paper, we analyzed the stability of HITS and PageRank

to small perturbations of a document collection. Based on our find-
ing that the stability of PageRank stems from its usage of a “re-
set” to the uniform distribution, we proposed Randomized HITS,
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which retains the hubs-and-authorities notion of influential articles
of HITS, but which is more stable to perturbation. We also pre-
sented a second algorithm, Subspace HITS, that is motivated by
the observation that subspaces spanned by a few eigenvectors may
sometimes be stable even when individual eigenvectors are not.
This algorithm may also be viewed as a principled way of com-
bining multiple HITS eigenvectors. We also reported on the em-
pirical performance of the four algorithms, and explored the issue
of “diversity” of the results returned by the algorithms, focusing
on the setting of web graphs with multiple connected components.
Finally, connections between LSI and HITS were discussed.
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Appendix: Proof of Stability of Subspace HITS
Let be a Lipschitz continuous function with Lipschitz constant
. Given a co-citation matrix , we first take the
singular value decomposition of to obtain , where

diag . Define to be the diagonal matrix
whose -element is . We calculate , and
define the authority of page to be (where is the -th
basis vector). Note that the diagonal of contains all the authority
scores. The reader may easily verify that this is equivalent to our
previous definition of where is the -th
column of .
Let , and let , , , , , and be all the corre-

sponding perturbed quantities. Let . By the invariance
of Frobenius norm to unitary transforms:

(7)

Now, the -element of the matrix is:

(8)
(9)
(10)

Substituting this back into Equation (7), we have that

(11)

Now, treating the columns of and as two bases for , for
each , we let and be the basis expansions of
in these two bases. i.e., , and , so that

and . Note also that

(12)

LEMMA 5. Let satisfy
. Then

(13)

Proof. View , whose domain has elements, as a vector in .
Also define , given by to be another
vector in this space. Using Equation (12), it is easy to show that

, so that the vectors
in fact form an orthonormal basis for an dimensional sub-

space of . In , the precondition in the Lemma is exactly
that “ .” Moreover, the inner product of and is

Since the projection
of a vector onto some subspace can be no longer than the origi-
nal vector, we have , which
proves the lemma.
Proof of Theorem 4. We have the following:

(14)

(15)

Define . Using the Lipschitz con-
dition on , we have:

where the last step used Equation (11). Applying Lemma 5 with
, we therefore conclude that
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